P3.17-3)	Consider the 6 m long ladder shown.	If point A of the ladder
contacting	g the wall is sliding down with a constar	nt velocity of 6 m/s, then
determine	the acceleration of point B of the ladde	er contacting the floor at
the instan	t when y is equal to 2 m.	•

\sim	٠	_		
(-	IV	Δ	n	٠
\sim	ıv	v		

ration of point B of the ladder contacting the floor at equal to 2 m. L = 6m P3.17-3

Find:

Solution:

Position equation

Write down the position of point B in terms of the position of point A.

Velocity

Take the first time derivative of the above equation.

Acceleration

Take the second time derivative of x.

$$\ddot{x} =$$

What is the acceleration of point B when y = 2 m

$$\dot{x} =$$

$$\ddot{x}_{y=2} = \underline{\hspace{1cm}}$$